Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development.

Members of the transforming growth factor (TGF)-beta family of cell-signaling molecules have been implicated recently in mammalian left-right (LR) axis development, the process by which vertebrates lateralize unpaired organs (e.g., heart, stomach, and spleen). Two family members, Lefty1 and Lefty2, are expressed exclusively on the left side of the mouse embryo by 8.0 days post coitum. This asymmetry is lost or reversed in two murine models of abnormal LR-axis specification, inversus viscerum (iv) and inversion of embryonic turning (inv). Furthermore, mice homozygous for a Lefty1 null allele manifest LR malformations and misexpress Lefty2. We hypothesized that Lefty mutations may be associated with human LR-axis malformations. We now report characterization of two Lefty homologues, LEFTY A and LEFTY B, separated by approximately 50 kb on chromosome 1q42. Each comprises four exons spliced at identical positions. LEFTY A is identical to ebaf, a cDNA previously identified in a search for genes expressed in human endometrium. The deduced amino acid sequences of LEFTY A and LEFTY B are more similar to each other than to Lefty1 or Lefty2. Analysis of 126 human cases of LR-axis malformations showed one nonsense and one missense mutation in LEFTY A. Both mutations lie in the cysteine-knot region of the protein LEFTY A, and the phenotype of affected individuals is very similar to that typically seen in Lefty1-/- mice with LR-axis malformations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app