Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII.

Agitation- and freeze-thawing-induced aggregation of recombinant human factor XIII (rFXIII) is due to interfacial adsorption and denaturation at the air-liquid and ice-liquid interfaces. The aggregation pathway proceeds through soluble aggregates to formation of insoluble aggregates regardless of the denaturing stimuli. A nonionic surfactant, polyoxyethylene sorbitan monolaurate (Tween 20), greatly reduces the rate of formation of insoluble aggregates as a function of surfactant concentration, thereby stabilizing native rFXIII. Maximum protection occurs at concentrations close to the critical micelle concentration (cmc), independent of initial protein concentration. To study the mechanistic aspects of the surfactant-induced stabilization, a series of spectroscopic studies were conducted. Electron paramagnetic resonance spectroscopy indicates that binding is not occurring between Tween 20 and either the native state or a folding intermediate state of rFXIII. Further, circular dichroism spectroscopy suggests that Tween 20 does not prevent the secondary structural changes induced upon guanidinium hydrochloride-induced unfolding. Taken together, these results imply that Tween 20 protects rFXIII against freeze-thawing- and agitation-induced aggregation primarily by competing with stress-induced soluble aggregates for interfaces, inhibiting subsequent transition to insoluble aggregates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app