Add like
Add dislike
Add to saved papers

Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time.

Radiology 1999 Februrary
PURPOSE: To investigate additional information provided by maps of relative cerebral blood flow in functional magnetic resonance (MR) imaging of human hyperacute cerebral ischemic stroke.

MATERIALS AND METHODS: Diffusion-weighted and hemodynamic MR imaging were performed in 23 patients less than 12 hours after the onset of symptoms. Maps of relative cerebral blood flow and tracer mean tissue transit time were computed, as were maps of apparent diffusion and relative cerebral blood volume. Acute lesion volumes on the maps were compared with follow-up imaging findings.

RESULTS: In 15 of 23 subjects (65%), blood flow maps revealed hemodynamic abnormalities not visible on blood volume maps. A mismatch between initial blood flow and diffusion findings predicted growth of infarct more often (12 of 15 subjects with infarcts that grew) than did a mismatch between initial blood volume and diffusion findings (eight of 15). However, lesion volumes on blood volume and diffusion maps correlated better with eventual infarct volumes (r > 0.90) than did those on blood flow and tracer mean transit time maps (r approximately 0.6), likely as a result of threshold effects. In eight patients, blood volume was elevated around the diffusion abnormality, suggesting a compensatory hemodynamic response.

CONCLUSION: MR imaging can delineate areas of altered blood flow, blood volume, and water mobility in hyperacute human stroke. Predictive models of tissue outcome may benefit by including computation of both relative cerebral blood flow and blood volume.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app