Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypervariable region 1 variants act as TCR antagonists for hepatitis C virus-specific CD4+ T cells.

In various human viral infections, the appearance of mutated epitopes displaying TCR antagonistic activity has been correlated with the severity and persistence of infection. In hepatitis C virus (HCV) infection, where the virus persistence has been associated with the rapid and substantial Ag modifications occurring during replication, TCR antagonism has been evidenced in CD8+ T cell responses. However, CD4+ T cell antagonism may be another important strategy by which HCV eludes a protective response, because sustained Th responses directed against several HCV Ags are associated with a self-limited course of infection. The data reported here represent the first evidence that variants of the hypervariable region (HVR1) of the putative Envelope 2 protein of HCV can act as powerful TCR antagonists for HVR1-specific CD4+ T cells isolated from HCV-infected individuals. Using classical antagonism assays, we observed strong inhibition of cellular proliferation and cytokine production when the agonist and the antagonist ligands were simultaneously presented by the same APCs. The presence in HVR1 of conserved residues, critical for binding to HLA-DR molecules, supports the function of HVR1 variants as TCR antagonists. In conclusion, our data evidence an antagonism phenomenon, which was achieved by naturally occurring class II-restricted T cell epitopes whose mechanism was addressed in terms of the antagonist capacity to inhibit agonist-mediated TCR down-regulation and early signal transduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app