Add like
Add dislike
Add to saved papers

Progressive cortical change during adolescence in childhood-onset schizophrenia. A longitudinal magnetic resonance imaging study.

BACKGROUND: Adolescence provides a window to examine regional and disease-specific late abnormal brain development in schizophrenia. Because previous data showed progressive brain ventricular enlargement for a group of adolescents with childhood-onset schizophrenia at 2-year follow-up, with no significant changes for healthy controls, we hypothesized that there would be a progressive decrease in volume in other brain tissue in these patients during adolescence.

METHODS: To examine cortical change, we used anatomical brain magnetic resonance imaging scans for 15 patients with childhood-onset schizophrenia (defined as onset of psychosis by age 12 years) and 34 temporally yoked, healthy adolescents at a mean (SD) age of 13.17 (2.73) years at initial baseline scan and 17.46 (2.96) years at follow-up scan. Cortical gray and white matter volumes were obtained with an automated analysis system that classifies brain tissue into gray matter, white matter, and cerebrospinal fluid and separates the cortex into anatomically defined lobar regions.

RESULTS: A significant decrease in cortical gray matter volume was seen for healthy controls in the frontal (2.6%) and parietal (4.1%) regions. For the childhood-onset schizophrenia group, there was a decrease in volume in these regions (10.9% and 8.5%, respectively) as well as a 7% decrease in volume in the temporal gray matter. Thus, the childhood-onset schizophrenia group showed a distinctive disease-specific pattern (multivariate analysis of variance for change X region X diagnosis: F, 3.68; P = .004), with the frontal and temporal regions showing the greatest between-group differences. Changes in white matter volume did not differ significantly between the 2 groups.

CONCLUSIONS: Patients with very early-onset schizophrenia had both a 4-fold greater decrease in cortical gray matter volume during adolescence and a disease-specific pattern of change. Etiologic models for these patients' illness, which seem clinically and neurobiologically continuous with later-onset schizophrenia, must take into account both early and late disruptions of brain development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app