JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions.

Annals of Neurology 1999 September
Benign familial neonatal convulsions (BFNC) is a rare dominantly inherited epileptic syndrome characterized by frequent brief seizures within the first days of life. The disease is caused by mutations in one of two recently identified voltage-gated potassium channel genes, KCNQ2 or KCNQ3. Here, we describe a four-generation BFNC family carrying a novel mutation within the distal, unconserved C-terminal domain of KCNQ2, a 1-bp deletion, 2513delG, in codon 838 predicting substitution of the last seven and extension by another 56 amino acids. Three family members suffering from febrile but not from neonatal convulsions do not carry the mutation, confirming that febrile convulsions and BFNC are of different pathogenesis. Functional expression of the mutant channel in Xenopus oocytes revealed a reduction of the potassium current to 5% of the wild-type current, but the voltage sensitivity and kinetics were not significantly changed. To find out whether the loss of the last seven amino acids or the C-terminal extension because of 2513delG causes the phenotype, a second, artificial mutation was constructed yielding a stop codon at position 838. This truncation increased the potassium current by twofold compared with the wild type, indicating that the pathological extension produces the phenotype, and suggesting an important role of the distal, unconserved C-terminal domain of this channel. Our results indicate that BFNC is caused by a decreased potassium current impairing repolarization of the neuronal cell membrane, which results in hyperexcitability of the central nervous system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app