Add like
Add dislike
Add to saved papers

Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures.

Spine 1999 September 2
STUDY DESIGN: Cadaveric study on the biomechanics of osteoporotic vertebral bodies augmented and not augmented with polymethylmethacrylate cement.

OBJECTIVES: To determine the strength and stiffness of osteoporotic vertebral bodies subjected to compression fractures and 1) not augmented, 2) augmented with unipedicular injection of cement, or 3) augmented with bipedicular injection of cement.

SUMMARY OF BACKGROUND DATA: Percutaneous vertebroplasty is a relatively new method of managing osteoporotic compression fractures, but it lacks biomechanical confirmation.

METHODS: Fresh vertebral bodies (L2-L5) were harvested from 10 osteoporotic spines (T scores range, -3.7 to -8.8) and compressed in a materials testing machine to determine intact strength and stiffness. They were then repaired using a transpedicular injection of cement (unipedicular or bipedicular), or they were unaugmented and recrushed.

RESULTS: Results suggest that unipedicular and bipedicular cement injection restored vertebral body stiffness to intact values, whereas unaugmented vertebral bodies were significantly more compliant than either injected or intact vertebral bodies. Vertebral bodies injected with cement (both bipedicular and unipedicular) were significantly stronger than the intact vertebral bodies, whereas unaugmented vertebral bodies were significantly weaker. There was no significant difference in loss in vertebral body height between any of the augmentation groups.

CONCLUSIONS: This study suggests that unipedicular and bipedicular injection of cement, as used during percutaneous vertebroplasty, increases acute strength and restores stiffness of vertebral bodies with compression fractures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app