JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer.

Among the noninvasive imaging modalities, contrast enhanced magnetic resonance (MR) imaging is the most powerful tool with which to visualize vascularity. Common pathology only shows microvessel density, whereas dynamic MR imaging is sensitive to the total endothelial surface area of perfused vessels. Therefore, dynamic MR imaging may be of additional value in tumor staging and in evaluating therapies that affect the perfused microvessel density or surface area, such as chemo-, radiation, or anti-angiogenic therapy. In urinary bladder cancer, this technique results in improved local and nodal staging, in improved separation of transurethral granulation tissue and edema from malignant tumor, and in improved evaluation of the effect of chemotherapy. In prostate cancer, dynamic MR imaging may be of help in problematic cases. This technique can assist in determining seminal vesicle infiltration, in depicting of minimal capsular penetration, and in recognizing tumors within the transitional zone. Also, based on very rapid enhancement, very poorly differentiated tumors can be recognized. Evaluation of the effects of therapy is another promising area, however a lot of research remain to be done. This article reviews some basics of fast enhancement techniques, provides practical information, and shows recent developments, in using these fast techniques for staging and grading of bladder and prostate cancer, and for evaluating the effect of therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app