Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients.

Mutations in human mitochondrial tRNA genes are associated with a number of multisystemic disorders. Using an assay that combines tRNA oxidation and circularization we have determined the relative amounts and states of aminoacylation of mutant and wild-type tRNAs in tissue samples from patients with MELAS syndrome (mito- chondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) and MERRF syndrome (myoclonus epilepsy with ragged red fibers), respectively. In most, but not all, biopsies from MELAS patients carrying the A3243G substitution in the mitochondrial tRNA(Leu(UUR))gene, the mutant tRNA is under-represented among processed and/or aminoacylated tRNAs. In contrast, in biopsies from MERRF patients harboring the A8344G substitution in the tRNA(Lys)gene neither the relative abundance nor the aminoacylation of the mutated tRNA is affected. Thus, whereas the A3243G mutation may contribute to the pathogenesis of MELAS by reducing the amount of aminoacylated tRNA(Leu), the A8344G mutation does not affect tRNA(Lys)function in the same way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app