CLINICAL TRIAL
CONTROLLED CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

The muscle mitogen-activated protein kinase is altered in sporadic inclusion body myositis.

Neurology 2000 April 26
OBJECTIVE: To examine the origin of hyperphosphorylated proteins within the vacuolated myofibers in sporadic inclusion body myositis (s-IBM) and search for dysregulated intracellular protein phosphorylation.

BACKGROUND: s-IBM is morphologically characterized by primary endomysial inflammation and vacuolated myofibers containing tubulofilaments that originate from cytoskeletal proteins. Mitogen-activated protein kinases (MAPKs) play a role in regulating phosphorylation and maintaining the stability of the cytoskeletal architecture.

METHODS: Muscle biopsies from seven patients with s-IBM and 15 controls were examined for the expression of the active components of the various MAPKs, including p44/42MAPK, p38MAPK, p46JNK1, p54JNK2, and p54JNK3, using immunocytochemistry and Western blot analysis. The expression of selected phosphorylated components was also examined in the same specimens.

RESULTS: In s-IBM, but not the disease controls, the vacuolated muscle fibers express active p42MAPK but not JNK or p38MAPK. Western blots of cell lysates confirmed the hyperexpression of p42MAPK and demonstrated a novel 35 kD phosphoprotein. Antibodies against phosphoepitopes of the 35 kD protein preferentially immunostained antigens within the vacuolated muscle fibers of s-IBM but not disease controls.

CONCLUSION: In s-IBM, there is increased p42MAPK activation and abnormal intracellular protein phosphorylation with selective accumulation of a 35 kD phosphoprotein within the vacuolated fibers. Although the hyperexpression of 35kD protein may represent cytoskeletal by-products due to heightened p42MAPK activation, its abundant expression only in s-IBM implies that hyperphosphorylated myofibrillar proteins may be involved in the primary disease process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app