JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry.

Radiology 2000 November
PURPOSE: To evaluation the cancellous bone-induced intravoxel spin dephasing rate (R2') and its relationship to bone mineral density and marrow fat and to examine these parameters as predictors of vertebral fracture status.

MATERIALS AND METHODS: R2' and R2, the rate constants for reversible and irreversible spin dephasing, and marrow fat fraction were measured in the lumbar vertebrae and proximal femur. One hundred thirty-nine subjects (mean age, 62.4 years +/- 11.4 [SD]; 33 men, 106 women) had spinal dual-energy x-ray absorptiometric bone mineral density (BMD) T scores ranging from +3 to -5. R2', BMD, and bone marrow composition as determinants of vertebral fracture status were examined.

RESULTS: Strongest single predictors of fracture status for BMD and R2' were the Ward triangle (r(2) = 0.48) and trochanter (r(2) = 0.37), respectively. Combined, the two parameters and sites increased fracture prediction (r(2) = 0. 62), whereas the combination of multiple BMD sites did not. Multivariate regression involving marrow fat fraction further improved fracture status prediction. R2' was correlated with BMD at all sites, although slopes differed by a factor of up to 2.5, which reflected differences in trabecular orientation relative to the static field. R2, the true transverse relaxation rate, was negatively correlated with marrow fat fraction. A non-age-related increase in marrow fat fraction in osteoporosis parallels earlier findings in animal models.

CONCLUSION: Cancellous bone marrow R2' measured in the proximal femur provides information, which, with BMD, improves prediction of vertebral fracture status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app