Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Chronic hibernation and chronic stunning: a continuum.

Identification of myocardial viability is of increasing clinical importance in managing patients with coronary artery disease and advanced left ventricular dysfunction. Although viable chronically dysfunctional myocardium is always the result of repetitive episodes of reversible ischemia, there may be multiple mechanisms responsible for the contractile dysfunction. Many patients have contractile dysfunction with normal resting perfusion, as determined by imaging, that is related to chronic myocardial stunning. Viability studies are generally unnecessary because normal resting perfusion would preclude significant fibrosis. The clinical problem arises in evaluating patients with depressed resting flow that can be due to hibernating myocardium or nontransmural infarction. In this circumstance viability studies are required to assess the likelihood of functional recovery after revascularization. Although hibernating myocardium was originally posited to develop in response to prolonged episodes of myocardial ischemia (experimentally termed "short-term hibernation"), subsequent studies have shown that this tenuous balance can only be maintained for a period of several hours before resulting in some degree of subendocardial infarction. More recent experimental studies have demonstrated that there is a progression from chronic stunning with normal flow to hibernating myocardium with reduced resting flow. This presumably arises from repetitive episodes of spontaneous ischemia that increase in frequency as the physiologic significance of a coronary stenosis progresses. Thus in this new paradigm reduced flow is a result, rather than the cause, of the contractile dysfunction. This review summarizes basic and clinical pathophysiologic studies supporting the claim that chronic stunning and hibernation are distinct entities that may represent opposite ends of a continuum of mechanisms in viable chronically dysfunctional myocardium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app