Add like
Add dislike
Add to saved papers

Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse.

Nature Genetics 2001 January
Scurfy (sf) is an X-linked recessive mouse mutant resulting in lethality in hemizygous males 16-25 days after birth, and is characterized by overproliferation of CD4+CD8- T lymphocytes, extensive multiorgan infiltration and elevation of numerous cytokines. Similar to animals that lack expression of either Ctla-4 or Tgf-beta, the pathology observed in sf mice seems to result from an inability to properly regulate CD4+CD8- T-cell activity. Here we identify the gene defective in sf mice by combining high-resolution genetic and physical mapping with large-scale sequence analysis. The protein encoded by this gene (designated Foxp3) is a new member of the forkhead/winged-helix family of transcriptional regulators and is highly conserved in humans. In sf mice, a frameshift mutation results in a product lacking the forkhead domain. Genetic complementation demonstrates that the protein product of Foxp3, scurfin, is essential for normal immune homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app