JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pulsed electromagnetic fields increase growth factor release by nonunion cells.

The mechanisms involved in pulsed electromagnetic field stimulation of nonunions are not known. Animal and cell culture models suggest endochondral ossification is stimulated by increasing cartilage mass and production of transforming growth factor-beta 1. For the current study, the effect of pulsed electromagnetic field stimulation on cells from human hypertrophic (n = 3) and atrophic (n = 4) nonunion tissues was examined. Cultures were placed between Helmholtz coils, and an electromagnetic field (4.5-ms bursts of 20 pulses repeating at 15 Hz) was applied to 1/2 of them 8 hours per day for 1, 2, or 4 days. There was a time-dependent increase in transforming growth factor-beta 1 in the conditioned media of treated hypertrophic nonunion cells by Day 2 and of atrophic nonunion cells by Day 4. There was no effect on cell number, [3H]-thymidine incorporation, alkaline phosphatase activity, collagen synthesis, or prostaglandin E2 and osteocalcin production. This indicates that human nonunion cells respond to pulsed electromagnetic fields in culture and that transforming growth factor-beta 1 production is an early event. The delayed response of hypertrophic and atrophic nonunion cells (> 24 hours) suggests that a cascade of regulatory events is stimulated, culminating in growth factor synthesis and release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app