JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Partial peripheral motor nerve lesions induce changes in the conduction properties of remaining intact motoneurons.

A partial injury or loss of peripheral motor axons is followed by compensatory sprouting of remaining intact motor axons in order to reinnervate muscle. Little is known, however, about the electrophysiologic properties proximally of these intact motoneurons and their axons following injury of neighboring motor axons. We studied the conduction properties of intact cat motor axons and motoneurons proximal to the site of a partial peripheral nerve section. Twelve weeks after the partial transection of the cat medial gastrocnemius motor nerve, there was a significant (7%) reduction in conduction velocity and a 13% prolongation in afterhyperpolarization half-decay time in the remaining intact motoneurons, compared with controls. Partial injury to motor nerves thus induces reactive electrophysiologic changes in the remaining intact motoneurons and their axons, perhaps associated with compensatory sprouting within partially denervated muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app