Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Haemophilus ducreyi inhibits phagocytosis by U-937 cells, a human macrophage-like cell line.

Haemophilus ducreyi is a gram-negative obligate human pathogen that causes the genital ulcer disease chancroid. Chancroid lesions are deep necrotic ulcers with an immune cell infiltrate that includes macrophages. Despite the presence of these phagocytic cells, chancroid ulcers can persist for months and live H. ducreyi can be isolated from these lesions. To analyze the interaction of H. ducreyi with macrophages, we investigated the ability of H. ducreyi strain 35000 to adhere to, invade, and survive within U-937 cells, a human macrophage-like cell line. We found that although H. ducreyi strain 35000 adhered efficiently to U-937 cells, few bacteria were internalized, suggesting that H. ducreyi avoids phagocytosis by human macrophages. The few bacteria that were phagocytosed in these experiments were rapidly killed. We also found that H. ducreyi inhibits the phagocytosis of a secondary target (opsonized sheep red blood cells). Antiphagocytic activity was found in logarithmic, stationary-phase, and plate-grown cultures and was associated with whole, live bacteria but not with heat-killed cultures, sonicates, or culture supernatants. Phagocytosis was significantly inhibited after a 15-min exposure to H. ducreyi, and a multiplicity of infection of approximately 1 CFU per macrophage was sufficient to cause a significant reduction in phagocytosis by U-937 cells. Finally, all of nine H. ducreyi strains tested were antiphagocytic, suggesting that this is a common virulence mechanism for this organism. This finding suggests a mechanism by which H. ducreyi avoids killing and clearance by macrophages in chancroid lesions and inguinal lymph nodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app