Journal Article
Review
Add like
Add dislike
Add to saved papers

Nuclear imaging of bone tumors: FDG-PET.

Positron emission tomography (PET) has become a very useful adjunct to anatomic imaging techniques, because it can provide an in vivo method for quantifying functional metabolism in normal and diseased tissues. Clinical trials with [(18)F] 2-deoxy-2-fluoro-D-glucose (FDG), the most commonly used radiolabeled tracer for PET imaging, has demonstrated increased accumulation of FDG in cancer tissue. FDG-PET is now widely used for the detection, differentiation, grading, staging, and monitoring of various neoplasms. However, the significance of FDG-PET in such evaluations of primary bone tumors and tumor-like lesions has not been extensively elucidated. In this article, we present recent advances in FDG-PET studies for evaluating primary bone tumors and tumor-like lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app