Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie.

Transmissible spongiform encephalopathies display long incubation periods at the beginning of which the titer of infectious agents (prions) increases in peripheral lymphoid organs. This "replication" leads to a progressive invasion of the CNS. Follicular dendritic cells appear to support prion replication in lymphoid follicles. However, the subsequent steps of neuroinvasion remain obscure. CD11c(+) dendritic cells, an unrelated cell type, are candidate vectors for prion propagation. We found a high infectivity titer in splenic dendritic cells from prion-infected mice, suggesting that dendritic cells carry infection. To test this hypothesis, we injected RAG-1(0/0) mice intravenously with live spleen cell subsets from scrapie-infected donors. Injection of infected dendritic cells induced scrapie without accumulation of prions in the spleen. These results suggest that CD11c(+) dendritic cells can propagate prions from the periphery to the CNS in the absence of any additional lymphoid element.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app