Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains.

Development 2001 October
Fibroblast growth factor receptors (FGFR) 1 and 3 have distinct mitogenic activities in vitro. In several cultured cell lines, FGFR1 transmits a potent mitogenic signal, whereas FGFR3 has little or no mitogenic activity. However, in other in vitro assays the FGFR3 intracellular domain is comparable with that of FGFR1. In vivo, FGFR3 negatively regulates chondrocyte proliferation and differentiation, and activating mutations are the molecular etiology of achondroplasia. By contrast, FGFR1 transmits a proliferative signal in various cell types in vivo. These observations suggest that inhibition of the proliferating chondrocyte could be a unique property of FGFR3 or, alternatively, a unique property of the proliferating chondrocyte. To test this hypothesis, FGFR1 signaling was activated in the growth plate in cells that normally express FGFR3. Comparison of transgenic mice with an activated FGFR1 signaling pathway with an achondroplasia-like mouse that expresses a similarly activated FGFR3 signaling pathway demonstrated that both transgenes result in a similar achondroplasia-like dwarfism. These data demonstrate that suppression of mitogenic activity by FGFR signaling is a property that is unique to growth plate chondrocytes. Surprisingly, we observed that in transgenic mice expressing an activated FGFR, some synovial joints failed to develop and were replaced by cartilage. The defects in the digit joints phenocopied the symphalangism that occurs in Apert syndrome and the number of affected joints was dependent on transgene dose. In contrast to the phenotype in the growth plate, the joint phenotype was more severe in transgenic mice with an activated FGFR1 signaling pathway. The failure of joint development resulted from expanded chondrification in the presumptive joint space, suggesting a crucial role for FGF signaling in regulating the transition of condensed mesenchyme to cartilage and in defining the boundary of skeletal elements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app