JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Erbium:YAG cutaneous laser resurfacing.

The short-pulsed Er:YAG laser system is an excellent ablative tool for cutaneous resurfacing. This system is most efficacious for patients with milder cutaneous involvement, including mild photoinduced facial rhytides, mildly atrophic scars, and textural changes caused by fibrosis and dermatochalasis. The Er:YAG laser cannot achieve the same dramatic clinical and histologic improvements produced with the CO2 laser but does offer some distinct advantages that make it a valuable addition to the laser surgeon's armamentarium. The Er:YAG laser, because of its higher affinity for water-containing tissues, effects a much finer level of tissue ablation. Although erbium laser resurfacing results in decreased postoperative morbidity with a shorter recovery period, it cannot effect the same degree of improvement in photodamaged skin as can the CO2 laser. Excellent results, however, can be achieved with this laser, up to 50% or more overall clinical improvement, in patients with milder photodamage and scarring (Glogau classes I and II). In darker-skinned patients, the Er:YAG laser is often the preferred treatment modality. Continued research in the field has already led to the development of longer-pulsed Er:YAG lasers, which offer a compromise between the CO2 laser and the short-pulsed Er:YAG lasers in terms of clinical benefits while maintaining the safety profile of the traditional short-pulsed system. In addition, many surgeons now use a combination approach with the CO2 and Er:YAG lasers in an effort to maximize collagen contraction in certain areas and limit postoperative morbidity. As more research is conducted within the field of cutaneous resurfacing, newer systems will be developed in the continuing effort to create the ideal laser system--one which ameliorates the signs of photoaging without risk of major side effects or significant postoperative recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app