Journal Article
Review
Add like
Add dislike
Add to saved papers

Host factors involved in West Nile virus replication.

Viruses use cell proteins during many stages of their replication cycles, including attachment, entry, translation, transcription/replication, and assembly. Mutations in the cell proteins involved can cause disruptions of these critical host-virus interactions, which in turn can affect the efficiency of virus replication. These host-virus interactions also represent novel targets for the development of new antiviral agents. The different alleles of the murine Flv gene confer resistance or susceptibility to flavivirus-induced disease and provide a natural mutant system for the study of a host protein that can alter the outcome of a flavivirus infection. Since flaviviruses, such as West Nile virus, replicate in mosquitoes, mammals, and birds during their natural transmission cycles, it is expected that the critical cell proteins used by these viruses will be ones that are highly conserved between divergent host species. Our laboratory has focused on the identification and characterization of the flavivirus resistance gene product and of cell proteins that interact with the 3' terminal regions of the West Nile virus genomic and antigenomic RNAs. The 3' terminal regions of the viral RNAs function as promotors for viral RNA replication. Cell proteins that bind to the viral 3' RNAs were detected by gel shift and UV-induced cross-linking assays. Individual proteins were then purified and partially sequenced. Mutation of a mapped, protein-binding site within the 3' terminal region of the viral RNA in an infectious West Nile virus clone was used to demonstrate the functional importance of one of the cell proteins for efficient West Nile virus replication. Data from additional studies suggested possible roles for this viral RNA-cell protein interaction during the flavivirus replication cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app