Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Three lipoprotein receptors and cholesterol in inclusion-body myositis muscle.

Neurology 2002 Februrary 13
BACKGROUND: An important aspect of inclusion-body myositis (IBM) vacuolated muscle fibers (VMF) is abnormal accumulation of amyloid-beta precursor protein (AbetaPP) epitopes and its product, amyloid-beta (Abeta), and of phosphorylated tau (p-tau) in the form of paired helical filaments. Lipoprotein receptors and cholesterol are known to play an important role in AbetaPP processing, Abeta production, and tau phosphorylation.

METHODS: In 10 IBM and 22 control muscle biopsies the authors immunolocalized low-density lipoprotein receptor (LDLR), very low-density lipoprotein receptor (VLDLR), and low-density lipoprotein receptor-related protein (LRP), and colocalized them with Abeta, p-tau, APOE, and free cholesterol.

RESULTS: In each biopsy, virtually all IBM VMF had strong LDLR-immunoreactive inclusions, which colocalized with Abeta, APOE, p-tau, and free cholesterol. VLDLR was increased mainly diffusely, but in approximately 50% of the VMF it was also accumulated in the form of inclusions colocalizing with Abeta, APOE, and free cholesterol, but not with p-tau. LRP inclusions were present in a few VMF. In all myopathies, a subset of regenerating and necrotizing muscle fibers had prominent diffuse accumulation of both LDLR and free cholesterol. At normal neuromuscular junctions (NMJ) postsynaptically, LDLR and VLDLR, but not LRP, were immunoreactive.

CONCLUSIONS: 1) Abnormal accumulation of LDLR, VLDLR, LRP, and cholesterol within IBM vacuolated muscle fibers suggests novel roles for them in the IBM pathogenesis. 2) Expression of LDLR and VLDLR at normal NMJ suggests physiologic roles for them in transsynaptic signaling pathways, increased internalization of lipoproteins there, or both. 3) Increased LDLR and free cholesterol in some regenerating and necrotizing muscle fibers suggest a role for them in human muscle fiber growth and repair and necrotic death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app