Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera.

OBJECTIVE: Clonal stem cell proliferation and increased erythrocyte mass are hallmarks of the myeloproliferative disorder polycythemia vera (PV). The molecular basis of PV is unknown.

METHODS: We carried out a genome-wide screening for loss of heterozygosity (LOH) and analyzed candidate genes within the LOH loci.

RESULTS: Three genomic regions were identified on chromosomes 9p, 10q, and 11q. The presence of these LOHs in both myeloid and lymphoid cells indicated their stem cell origin. The 9pLOH prevalence is approximately 33% and is the most frequent chromosomal lesion described in PV so far. We report that the 9pLOH is due to mitotic recombination and therefore remains undetectable by cytogenetic analysis. Nineteen candidate genes were selected within the 9pLOH region for sequencing and expression analysis. No mutations were found in these genes; however, unexpectedly, increased expression of the transcription factor NFI-B was detected in granulocytes and CD34(+) cells in PV with 9pLOH. Since a member of the NFI gene family (NFI-X) was reported to result in TGF-beta resistance when overexpressed in vitro (TGF-beta is a known inhibitor of hematopoiesis), we transfected the NFI-B gene to the mouse 32D cell line. We found that overexpression of the NFI-B gene confers TGF-beta resistance in vitro.

CONCLUSIONS: We characterized a new region on chromosome 9p frequently involved in LOH in PV. Analysis of genes within this 9pLOH region revealed increased expression of the NFI-B gene. Our in vitro studies suggest that TGF-beta resistance may be the physiologic mechanism of clonal stem cell expansion in PV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app