JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of a defect in the UGT1A1 gene promoter and its association with hyperbilirubinemia.

The UDP-glucuronosyltransferase UGT1A1 plays a critical role in the detoxification of potentially neurotoxic bilirubin by conjugating it with glucuronic acid. We identified a polymorphism that results in a T to G substitution at nucleotide number -3263 of the phenobarbital-responsive enhancer module of the UGT1A1 gene, thereby significantly decreasing transcriptional activity as indicated by the luciferase-reporter assay. At least one T-3263G allele was found in 21 of 25 subjects with mild hyperbilirubinemia (Gilbert's syndrome); this frequency (0.58) was significantly higher than that in normobilirubinemic controls (0.17; n = 8 of 27). Homozygous mutations in the TATA element (A[TA](7)TAA) or at nucleotide 211 of exon 1 (G to A substitution) were found in 5 and 2 of the hyperbilirubinemic group, respectively, while 12 of these subjects were double heterozygotes for the T-3263G and G211A mutations. Plasma total bilirubin levels in these double heterozygotes were significantly higher than those in control subjects carrying one or other of these mutations singly, indicating that compound heterozygous mutations may result in more strongly reduced UGT1A1 activity. Our results indicate that homozygosity and compound heterozygosity for mutations in the UGT1A1 gene promoter (T-3263G and A[TA](7)TAA) and/or exon 1 of the gene (G211A) could explain the hyperbilirubinemia seen in the majority of individuals with Gilbert's syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app