Add like
Add dislike
Add to saved papers

Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients.

Diffusion weighted MRI was performed on patients with acute vertebral body compression. The usefulness of the apparent diffusion coefficient (ADC) in differentiating between benign and malignant fractures was evaluated. A total of 49 acute vertebral body compression fractures were found in 32 patients. 25 fractures in 18 patients were due to osteoporosis, 18 fractures in 12 patients were histologically proven to be due to malignancy, and 6 fractures in 2 patients were due to tuberculosis. Signal intensities on T(1) weighted, short tau inversion recovery (STIR) and diffusion weighted images were compared. ADC values of normal and abnormal vertebral bodies were calculated. Except for two patients with sclerotic metastases, benign acute vertebral fractures were hypointense and malignant acute vertebral fractures were hyperintense with respect to normal bone marrow on diffusion weighted images. Mean combined ADCs (ADC(cmb); average of the combined ADCs in the x, y and z diffusion directions) were 0.23 x 10(-3) mm(2) s(-1) in normal vertebrae, 0.82 x 10(-3) mm(2) s(-1) in malignant acute vertebral fractures and 1.94 x 10(-3) mm(2) s(-1) in benign acute vertebral fractures. The differences between ADC(cmb) values were statistically significant (p<0.001). The ADC is useful in differentiating benign from malignant acute vertebral body compression fractures, but there may be overlapping ADC values between malignant fractures and tuberculous spondylitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app