Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations.

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) constitute a bone dysplasia family, which is both genetically and phenotypically heterogeneous. The disease spectrum ranges from mild MED, which manifests with pain and stiffness in the joints and delayed and irregular ossification of the epiphyses, to the more severe PSACH, which is characterized by marked short stature, deformity of the legs, and ligamentous laxity. PSACH is almost exclusively caused by mutations in cartilage oligomeric matrix protein (COMP) whereas various forms of MED are caused by mutations in the genes encoding COMP, type IX collagen (COL9A1, COL9A2, and COL9A3), matrilin-3 (MATN3), and solute carrier member 26, member 2 gene (SLC26A2). In this review we discuss specific disease-causing mutations and the clustering of these mutations in functionally and structurally important regions of the respective gene products, genotype to phenotype correlations, and the diagnostic relevance of mutation screening in these osteochondrodysplasias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app