Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Transgenic pigs designed to express human CD59 and H-transferase to avoid humoral xenograft rejection.

Xenotransplantation 2002 January
Research in pig-to-primate xenotransplantation aims to solve the increasing shortage of organs for human allotransplantation and develop new cell- and tissue-based therapies. Progress towards its clinical application has been hampered by the presence of xenoreactive natural antibodies that bind to the foreign cell surface and activate complement, causing humoral graft rejection. Genetic engineering of donor cells and animals to express human complement inhibitors such as hCD59 significantly prolonged graft survival. Strategies to decrease the deposition of natural antibodies were also developed. Expression of human alpha1,2-fucosyltransferase (H transferase, HT) in pigs modifies the cell-surface carbohydrate phenotype resulting in reduced Galalpha1,3-Gal expression and decreased antibody binding. We have developed transgenic pigs that coexpress hCD59 and HT in various cells and tissues to address both natural antibody binding and complement activation. Functional studies with peripheral blood mononuclear cells and aortic endothelial cells isolated from the double transgenic pigs showed that coexpression of hCD59 and HT markedly increased their resistance to human serum-mediated lysis. This resistance was greater than with cells transgenic for either hCD59 or HT alone. Moreover, transgene expression was enhanced and protection maintained in pig endothelial cells that were exposed for 24 h to pro-inflammatory cytokines. These studies suggest that engineering donor pigs to express multiple molecules that address different humoral components of xenograft rejection represents an important step toward enhancing xenograft survival and improving the prospect of clinical xenotransplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app