Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor.

Kennedy's disease is a degenerative disease of motor neurons in which the causative mutation is expansion of a CAG/polyglutamine tract near the 5' end of the androgen receptor gene. The mutant protein misfolds, aggregates, and interacts abnormally with other proteins, leading to a novel, toxic gain of function and an alteration of normal function. We used a cell culture model to explore the mechanisms underlying the alterations in androgen receptor function conferred by the mutation. Here we show that cells expressing the wild-type androgen receptor with 24 CAG repeats respond to ligand by showing trophic effects including prolonged survival in low serum, whereas cells expressing the mutant receptor with 65 CAG repeats do not show a robust trophic response. This partial loss of function correlates with decreased levels of the mutant protein due to its preferential degradation by the ubiquitin-proteasome pathway. Expression analysis using oligonucleotide arrays confirms that the mutant receptor has undergone a partial loss of function, and fails to regulate a subset of genes whose expression is normally affected by ligand activation of the wild-type receptor. The mutant receptor has also undergone several functionally important post-translational modifications in the absence of ligand that the wild-type receptor undergoes in the presence of ligand, including acetylation and phosphorylation. These modifications correlate with a ligand-independent gain of function exhibited by the mutant receptor in expression analysis. Our findings suggest that polyglutamine expansion alters androgen receptor function by promoting its degradation and by modifying its activity as a transcription factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app