Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

SLC26A3 mutations in congenital chloride diarrhea.

Human Mutation 2002 December
Congenital chloride diarrhea (CLD) is an autosomal recessive disorder of intestinal electrolyte absorption. It is characterized by persistent secretory diarrhea resulting in polyhydramnios and prematurity prenatally, and dehydration, hypoelectrolytemia, hyperbilirubinemia, abdominal distention, and failure to thrive immediately after birth. CLD is caused by mutations in the solute carrier family 26, member 3 gene (SLC26A3, alias CLD or DRA), which encodes a Na+-independent Cl-/HCO3- (or OH-) exchanger. SLC26A3 is a member of the SLC26 sulfate permease/anion transporter family and it is expressed mainly in the apical brush border of intestinal epithelium. The only extraintestinal tissues showing SLC26A3 expression are eccrine sweat glands and seminal vesicles. A wide variety of different mutations in the SLC26A3 gene have been associated with CLD with no apparent evidence of phenotype-genotype correlation. The clinical course of CLD, however, is variable and may rather depend on environmental factors and compensatory mechanisms than mutations. In this report, we present a summary of all published and two novel SLC26A3 mutations and polymorphisms, and review them in the context of their functional consequences and clinical implications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app