Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome.

Rab27a plays a pivotal role in the transport of melanosomes to dendrite tips of melanocytes and mutations in RAB27A, which impair melanosome transport cause the pigmentary dilution and the immune deficiency found in several patients with Griscelli syndrome (GS). Interestingly, three GS patients present single homozygous missense mutations in RAB27A, leading to W73G, L130P, and A152P transitions that affect highly conserved residues among Rab proteins. However, the functional consequences of these mutations have not been studied. In the present report, we evaluated the effect of overexpression of these mutants on melanosome, melanophilin, and myosin-Va localization in B16 melanoma cells. Then we studied several key parameters for Rab27a function, including GTP binding and interaction with melanophilin/myosin-Va complex, which links melanosomes to the actin network. Our results showed that Rab27a-L130P cannot bind GTP, does not interact with melanophilin, and consequently cannot allow melanosome transport on the actin filaments. Interestingly, Rab27a-W73G binds GTP but does not interact with melanophilin. Thus, Rab27a-W73G cannot support the actin-dependent melanosome transport. Finally, Rab27a-A152P binds both GTP and melanophilin. However, Rab27a-A152P does not allow melanosome transport and acts as a dominant negative mutant, because its overexpression, in B16 melanoma cells, mimics a GS phenotype. Hence, the interaction of Rab27a with melanophilin/myosin-Va is not sufficient to ensure a correct melanosome transport. Our results pointed to an unexpected complexity of Rab27a function and open the way to the search for new Rab27a effectors or regulators that control the transport of Rab27a-dependent vesicles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app