COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D.

AIDS 2003 March 8
BACKGROUND: A high prevalence of bone demineralization occurs in people living with HIV/AIDS. The contribution of HIV itself and its treatment is still unclear. Protease inhibitors (PIs) are potent inhibitors of the cytochrome p450 enzyme system. Three cytochrome p450 mixed function oxygenases control serum levels of 1,25-dihydroxyvitamin D (1,25(OH) D ), which is responsible for vitamin D actions in target tissues including bone. The 25- and 1alpha-hydroxylases regulate 1,25(OH) D synthesis and 24-hydroxylase 1,25(OH) D catabolism.

OBJECTIVE: To assess whether HIV-protease inhibitors (ritonavir, indinavir, nelfinavir) impair the activity of the main enzymes involved in 1,25(OH) D homeostasis.

DESIGN AND METHODS: Studies were conducted in the human hepatocyte (H3B)- and monocyte (THP-1) cell lines, expressing 25-hydroxylase and 1alpha-hydroxylase, respectively. The 24-hydroxylase expression was induced in macrophages by exposure to 1,25(OH) D. Conversion rates of vitamin D to 25-hydroxyvitamin D [25(OH)D ]; 25(OH)D to 1,25(OH) D or 24,25(OH) D, and 1,25(OH) D degradation were quantified in untreated and HIV-PI-treated cells after C -cartridge extraction and high-performance liquid chromatography purification of 25(OH)D - 24,25(OH) D - and 1,25(OH) D fractions.

RESULTS: The PIs impair hepatocyte 25(OH)D - and macrophage 1,25(OH) D synthesis in a reversible, dose-dependent manner. Furthermore, PIs inhibit 1,25(OH) D -degradation in macrophages with lower potency than that elicited on 1alpha-hydroxylase. Thus, reduced macrophage 1,25(OH) D production is the net effect of PIs action.

CONCLUSIONS: In intact cells, HIV-PIs markedly suppress the activities of 25- and 1alpha-hydroxylase, which are critical in 1,25(OH) D synthesis, while exerting mild inhibition of 24-hydroxylase, responsible for 1,25(OH) D catabolism. If PIs elicit a similar potency in inhibiting these critical steps for 1,25(OH) D homeostasis, defective 1,25(OH) D production could contribute to the bone demineralization in HIV patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app