JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

New aspects of the pathogenesis of cystinosis.

Cystinosis is a lysosomal transport disorder characterized by an intra-lysosomal accumulation of cystine, the disulfide of the amino acid cysteine. It is the most common inherited cause of the renal Fanconi syndrome. There are various clinical forms, infantile, juvenile, and ocular, based on age of onset and severity of symptoms. The first clinical description appeared in the early 1900s, but it was not until 1998 that the causative gene, CTNS, was identified. CTNS encodes cystinosin, a novel seven transmembrane domain (TM) protein. Cystinosin is a lysosomal membrane protein that requires two lysosomal targeting signals: a classic GYDQL motif in its C-terminal tail and a novel conformational motif, the core of which is YFPQA, situated in the fifth inter-TM loop. Cystinosin is the lysosomal cystine transporter and its activity is H(+)-driven. A mouse model of cystinosis was recently generated and Ctns(-/-) mice accumulate cystine in all tissues. A high level of cystine accumulates in the kidney, but these mice do not present with proximal tubulopathy or renal dysfunction. The Ctns(-/-) mouse model may provide clues to the cause of the Fanconi syndrome associated with cystinosis, the origin of which remains poorly understood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app