JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling.

Cancer Research 2003 April 16
Intense angiogenesis proliferation, a histopathological hallmark distinguishing malignant from benign astrocytoma, is vital for tumor progression. Thus, identifying and targeting specific pathways that promote malignant astrocytoma-induced angiogenesis could have substantial therapeutic benefit. Expression profiling of 13 childhood astrocytomas to determine the expression pattern of 133 angiogenesis-related genes revealed that 44 (33%) genes were differentially expressed (17 were overexpressed, and 27 were underexpressed) between malignant high-grade astrocytomas (HGAs) and benign low-grade astrocytomas. Hierarchical clustering and principal components analysis using only the 133 angiogenesis-related genes distinguished HGA from low-grade astrocytoma in 100% of the samples analyzed, as did unsupervised analyses using the entire set of 9198 expressed genes represented on the array, indicating that the angiogenesis-related genes were reliable markers of pathological grade. A striking new finding was significant overexpression of hypoxia-inducible transcription factor (HIF)-2alpha as well as high-level expression of FK506-binding protein (FKBP) 12 by HGA. Furthermore, 9 of 21 (43%) genes overexpressed by HGA were HIF/FKBP-associated genes. This group included the epidermal growth factor receptor (EGFR), which promotes HIF synthesis, as well as insulin-like growth factor-binding protein 2 (IGFBP2), a target gene of HIF activity. Differential protein expression of HIF-2alpha was validated in an independent group of 16 astrocytomas (P = 0.02). We conclude that the EGFR/FKBP12/HIF-2alpha pathway is important in childhood HGA and represents a potential new therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app