Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor.

Cancer Research 1976 July
Singlet oxygen, a metastable state of normal triplet oxygen, has been identified as the cytotoxic agent that is probably responsible for in vitro inactivation of TA-3 mouse mammary carcinoma cells following incorporation of hematoporphyrin and exposure to red light. This photodynamic inactivation can be completely inhibited by intracellular 1,3-diphenylisobenzofuran. This very efficient singlet oxygen trap is not toxic to the cells nor does it absorb the light responsible for hematoporphyrin activation. We have found that the singlet oxygen-trapping product, o-dibenzoylbenzene, is formed nearly quantitatively intracellularly when both the furan and hematoporphyrin are present during illumination but not when only the furan is present during illumination. The protective effect against photodynamic inactivation of the TA-3 cells afforded by 1,3-diphenylisobenzofuran coupled with the nearly quantitative formation of the singlet oxygen-trapping product indicates that singlet oxygen is the probable agent responsible for toxicity in this system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app