COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle.

The mdx mouse model of muscular dystrophy arose due to a nonsense mutation in exon 23 of the dystrophin gene. We have previously demonstrated that 2'-O-methyl phosphorothioate antisense oligonucleotides (AOs) can induce removal of exon 23 during processing of the primary transcript. This results in an in-frame mRNA transcript and subsequent expression of a slightly shorter dystrophin protein in mdx muscle. Refinement of AO design has allowed efficient exon skipping to be induced in mdx mouse muscle cultures at nanomolar concentrations. In contrast, splicing intervention by morpholino AOs has been applied to the beta-globin gene pre-mRNA in cultured cells to correct aberrant splicing when delivered in the micromolar range. The morpholino chemistry produces a neutral molecule that has exceptional biological stability but poor cellular delivery. We present data showing that exon skipping in mdx cells may be induced by morpholino AOs at nanomolar concentrations when annealed to a sense oligonucleotide or "leash", and delivered as a cationic lipoplex. We have investigated a number of leash designs and chemistries, including mixed backbone oligonucleotides, and their ability to influence delivery and efficacy of the morpholino AO. Significantly, we detected dystrophin protein synthesis and correct sarcolemmal localisation after intramuscular injection of morpholino AO : leash lipoplexes in mdx muscle in vivo. We show enhanced delivery of a morpholino AO, enabling the advantageous properties to be exploited for potentially therapeutic outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app