Add like
Add dislike
Add to saved papers

Hypermethylation of the RUNX3 gene promoter in testicular yolk sac tumor of infants.

Testicular yolk sac tumor (YST) of infants is biologically distinct from its adult counterpart. Cytogenetically, YSTs in infants generally lack i(12p), which is highly characteristic of adult germ cell tumors (GCTs), whereas they frequently show a deletion of 1p36, indicating that the loss of a certain gene(s) in this region is an important event in the pathogenesis of infantile YSTs. In the present study, we examined 10 testicular YSTs from infants for promoter methylation status of the RUNX3 gene, localizing in 1p36.1, and loss of heterozygosity (LOH) in this region, on the presumption that RUNX3 acts as a tumor suppressor. Methylation of RUNX3 and LOH at 1p36.1 were detected in 8 of 10 (80%) and 6 of 8 (75%) infantile YSTs examined, respectively. All six cases harboring LOH showed RUNX3 methylation. In contrast, 0 of 12 adult GCTs showed RUNX3 methylation, and LOH at 1p36.1 was less frequent (1 of 6 cases: 16%) in adult GCTs. There is a significant difference in RUNX3 methylation between these 2 groups (P < 0.001). In normal testes of the young group, RUNX3 methylation was not detected. These results strongly suggest that RUNX3 is one of the tumor suppressors involved in the pathogenesis of testicular YSTs in infants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app