Add like
Add dislike
Add to saved papers

Clonal composition of glioblastoma multiforme.

Glioblastoma multiforme, the most common and most lethal primary central nervous system neoplasm, is noted for its phenotypic and biological heterogeneity. This heterogeneity may result from genetic alterations accumulated by a single transformed astrocyte as it evolves into a monoclonal tumor. Alternatively, it may be attributed to the presence of multiple biologically and genetically distinct astrocytic populations within a polyclonal tumor. To address the issue of clonal composition of glioblastoma multiforme the authors used two independent approaches: analysis of X-chromosome inactivation and analysis of chromosomes 10 and 17 for tumor-specific somatic deletions. The analysis included 10 tumors from nine female patients with glioblastoma multiforme (eight primary and two recurrent tumors), who were heterozygous at either of two X-chromosome genes (hypoxanthine phosphoribosyl-transferase or phosphoglycerate kinase). Nine glioblastomas multiforme demonstrated a monoclonal pattern on X-chromosome analysis; contamination with normal tissue obscured the analysis in one tumor. Somatic deletions on chromosomes 10 and/or 17 occurred in nine tumors, supporting a monoclonal composition for these tumors. These data suggest that glioblastoma multiforme is a monoclonal neoplasm, derived from the clonal expansion of a single transformed astrocyte that has, as a fundamental step in tumorigenesis, sustained a critical genetic alteration on chromosome 10 and/or 17.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app