Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle.

Glutamine synthetase is responsible for the ATP-dependent amidation of glutamate to glutamine. In liver the enzyme is highly localized in perivenous hepatocytes; in brain the enzyme is localized in astrocytes. Portacaval anastomosis resulted in liver atrophy, hyperammonemia, and up to 90% loss of glutamine synthetase activity in liver homogenates. This effect, which appears to be irreversible, probably reflects the selective loss of perivenous hepatocytes following portacaval anastomosis. Glutamine synthetase activities in brain were unaffected by portacaval anastomosis of up to 12 weeks' duration. Enzyme activities in homogenates of skeletal muscle, on the other hand, were significantly increased at one and four weeks after shunt surgery. These effects were not the result of decreased food intake in shunted animals. These findings suggest fundamentally different regulatory mechanisms for glutamine synthetase in these tissues. Skeletal muscle may thus provide an important alternative site for ammonia detoxification after portal-systemic shunting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app