Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Dyskeratosis congenita: its link to telomerase and aplastic anaemia.

Blood Reviews 2003 December
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome exhibiting considerable clinical and genetic heterogeneity. X-linked recessive, autosomal dominant and autosomal recessive forms are recognised. The gene mutated in X-linked DC (DKC1) encodes a highly conserved nucleolar protein called dyskerin. Dyskerin associates with the H/ACA class of small nucleolar RNAs which are important in guiding the conversion of uracil to pseudouracil in ribosomal RNA. Dyskerin also associates with the RNA component of telomerase (hTR) which is important in the maintenance of telomeres. Mutations in hTR were recently demonstrated in patients with autosomal dominant DC and in a subset of patients with aplastic anaemia (AA) but without other diagnostic features of DC. This discovery demonstrates that both DC and a subset of AA are due to a defect in telomerase. The link between DC and AA and in turn to defective telomerase suggests that treatments directed at correction of telomerase activity might benefit DC/AA patients who do not respond to conventional therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app