Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Positron emission tomography with [18F]fluorodeoxyglucose to evaluate neutrophil kinetics during acute lung injury.

We measured neutrophil glucose uptake with positron emission tomographic imaging and [18F]fluorodeoxyglucose ([18F]FDG-PET) in anesthetized dogs after intravenous oleic acid-induced acute lung injury (ALI; OA group, n = 6) or after low-dose intravenous endotoxin (known to activate neutrophils without causing lung injury) followed by OA (Etx + OA group, n = 7). The following two other groups were studied as controls: one that received no intervention (n = 5) and a group treated with Etx only (n = 6). PET imaging was performed 1.5 h after initiating experimental interventions. The rate of [3H]deoxyglucose ([3H]DG) uptake was also measured in vitro in cells recovered from bronchoalveolar lavage (BAL) performed after PET imaging. Circulating neutrophil counts fell significantly in animals treated with Etx but not in the other two groups. The rate of [18F]FDG uptake, measured by the influx constant Ki, was significantly elevated (P < 0.05) in both Etx-treated groups (7.9 +/- 2.6 x 10(-3) ml blood x ml lung(-1) x min(-1) in the Etx group, 9.3 +/- 4.8 x 10(-3) ml blood x ml lung(-1) x min(-1) in the Etx + OA group) but not in the group treated only with OA (3.4 +/- 0.8 x 10-3 ml blood x ml lung(-1) x min(-1)) when compared with the normal control (1.6 +/- 0.4 x 10(-3) ml blood x ml lung(-1) x min(-1)). [3H]DG uptake was increased (73 +/- 7%) in BAL neutrophils recovered from the Etx + OA group (P < 0.05) but not in the OA group. Ki and [3H]DG uptake rates were linearly correlated (R2 = 0.65). We conclude that the rate of [18F]FDG uptake in the lungs during ALI reflects the state of neutrophil activation. [18F]FDG-PET imaging can detect pulmonary sequestration of activated neutrophils, despite the absence of alveolar neutrophilia. Thus [18F]FDG-PET imaging may be a useful tool to study neutrophil kinetics during ALI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app