JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Studies on endocytic mechanisms of the Menkes copper-translocating P-type ATPase (ATP7A; MNK). Endocytosis of the Menkes protein.

The human X-linked recessive copper deficiency disorder, Menkes disease, is caused by mutations in the ATP7A (MNK) gene, which encodes a transmembrane copper-transporting P-type ATPase (MNK). The MNK protein is localised to the Golgi apparatus and relocalises to the plasma membrane when copper levels are elevated. Previous studies have identified a C-terminal di-leucine endocytic motif (L1487L1488) in MNK, thought to direct it into the clathrin-mediated endocytic pathway. To determine whether MNK is internalised via clathrin-dependent endocytosis, this pathway was blocked in MNK-overexpressing HeLa cells by the transient expression of dominant negative dynamin and Eps15 mutants. MNK internalisation was not inhibited in such cells. MNK internalisation was inhibited in cells treated with hypertonic sucrose that not only blocked clathrin-mediated endocytosis but also fluid-phase endocytosis. These studies, together with earlier studies on the requirement for L1487L1488, suggest that MNK can utilise both clathrin-dependent and clathrin-independent endocytosis in HeLa cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app