JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia.

Besides being one of the mechanisms responsible for ventilator-induced lung injury, atelectasis also seems to aggravate the course of experimental pneumonia. In this study, we examined the effect of reducing the degree of atelectasis by natural modified surfactant and/or open lung ventilation on bacterial growth and translocation in a piglet model of Group B streptococcal pneumonia. After creating surfactant deficiency by whole lung lavage, intratracheal instillation of bacteria induced severe pneumonia with bacterial translocation into the blood stream, resulting in a mortality rate of almost 80%. Treatment with 300 mg/kg of exogenous surfactant before instillation of streptococci attenuated both bacterial growth and translocation and prevented clinical deterioration. This goal was also achieved by reversing atelectasis in lavaged animals via open lung ventilation. Combining both exogenous surfactant and open lung ventilation prevented bacterial translocation completely, comparable to Group B streptococci instillation into healthy animals. We conclude that exogenous surfactant and open lung ventilation attenuate bacterial growth and translocation in experimental pneumonia and that this attenuation is at least in part mediated by a reduction in atelectasis. These findings suggest that minimizing alveolar collapse by exogenous surfactant and open lung ventilation may reduce the risk of pneumonia and subsequent sepsis in ventilated patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app