Journal Article
Review
Add like
Add dislike
Add to saved papers

Proteins that bind A-type lamins: integrating isolated clues.

What do such diverse molecules as DNA, actin, retinoblastoma protein and protein kinase Calpha all have in common? They and additional partners bind 'A-type' lamins, which form stable filaments in animal cell nuclei. Mutations in A-type lamins cause a bewildering range of tissue-specific diseases, termed 'laminopathies', including Emery-Dreifuss muscular dystrophy and the devastating Hutchinson-Gilford progeria syndrome, which mimics premature aging. Considered individually and collectively, partners for A-type lamins form four loose groups: architectural partners, chromatin partners, gene-regulatory partners and signaling partners. We describe 16 partners in detail, summarize their binding sites in A-type lamins, and sketch portraits of ternary complexes and functional pathways that might depend on lamins in vivo. On the basis of our limited current knowledge, we propose lamin-associated complexes with multiple components relevant to nuclear structure (e.g. emerin, nesprin 1alpha, actin) or signaling and gene regulation (e.g. LAP2alpha, retinoblastoma, E2F-DP heterodimers, genes) as 'food for thought'. Testing these ideas will deepen our understanding of nuclear function and human disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app