Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Myeloperoxidase deficiency enhances inflammation after allogeneic marrow transplantation.

Myeloperoxidase (MPO)-derived oxidants participate in the respiratory antimicrobial defense system but are also implicated in oxidant-mediated acute lung injury. We hypothesized that MPO contributes to lung injury commonly observed after bone marrow transplantation (BMT). MPO-sufficient (MPO+/+) and -deficient (MPO-/-) mice were given cyclophosphamide and lethally irradiated followed by infusion of inflammation-inducing donor spleen T cells at time of BMT. Despite suppressed generation of nitrative stress, MPO-/- recipient mice unexpectedly exhibited accelerated weight loss and increased markers of lung dysfunction compared with MPO+/+ mice. The increased lung injury during MPO deficiency was a result of donor T cell-dependent inflammatory responses because bronchoalveolar lavage fluids (BALF) from MPO-/- mice contained increased numbers of inflammatory cells and higher levels of the proinflammatory cytokine TNF-alpha and the monocyte chemoattractant protein-1 compared with wild-type mice. Enhanced inflammation in MPO-/- mice was associated with suppressed apoptosis of BALF inflammatory cells. The inflammatory process in MPO-/- recipients was also associated with enhanced necrosis of freshly isolated alveolar type II cells, critical for preventing capillary leak. We conclude that suppressed MPO-derived oxidative/nitrative stress is associated with enhanced lung inflammation and persistent alveolar epithelial injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app