JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Identification of the TBX5 transactivating domain and the nuclear localization signal.

Gene 2004 April 15
TBX5 is a member of the T-box gene family and encodes a transcription factor involved in cardiac and limb development. Mutations of TBX5 cause Holt-Oram syndrome (HOS), an autosomal-dominant condition with congenital cardiac defects and forelimb anomalies. Here, we used a GAL4-TBX5 fusion protein in a modified yeast-one hybrid system to elucidate the TBX5 transactivating domain. Using a series of deletion mutations of TBX5, we narrowed down its functional domain to amino acids 339-379 of its C-terminal half; point mutagenesis analysis then showed that the loss of amino acids 349-351 abolished transactivation. This result was confirmed in mammalian cells. Furthermore, wild-type TBX5, but not TBX5 with mutations at the amino acids 349-351, has ability to inhibit NCI-H1299 cell growth also suggesting that these amino acids are crucial for the TBX5 function in mammalian cells. In addition, to identify the nuclear localization signal of TBX5, we searched for cluster of basic amino acids. We found that the deletion of the KRK sequence at amino acids 325-327 mislocalizes TBX5 to cytoplasm, suggesting that these amino acids serve as a nuclear localization signal. These studies enhance our understanding of the structure-function relationship of TBX5 and suggest that truncation mutations of TBX5 could cause HOS through the loss of its transactivating domain and/or the nuclear localization signal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app