JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vivo oxygen radical generation in the skin of the protoporphyria model mouse with visible light exposure: an L-band ESR study.

Although oxygen radicals are thought to play a key role in the skin injury that is caused by protoporphyria, there is no direct evidence of generation of these radicals in vivo. This study measured the generation of oxygen radicals caused by visible light non-invasively in the skin of griseofulvin-induced protoporphyria model mice, using an in vivo electron spin resonance spectrometer equipped with a surface-coil-type resonator that could detect radicals within about 0.5 mm of the skin surface. A durable nitroxyl radical was administered intravenously as a probe. Light irradiation enhanced the decay of the nitroxyl signal in griseofulvin-treated mice, whereas light irradiation did not enhance the signal decay in control mice. The enhanced signal decay was completely suppressed by intravenous administration of hydroxyl radical scavengers, superoxide dismutase or catalase, or the intraperitoneal administration of desferrioxamine. The enhanced signal decay with illumination was reversible, and quickly responded to turning the light on and off. These observations suggest that the hydroxyl radical is generated via an iron-catalyzed reaction in the skin. This paper demonstrates, for the first time, the specific generation of oxygen radicals in response to light irradiation of the skin of protoporphyria model mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app