Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

Diffusion-weighted MRI of spinal cord infarction--high resolution imaging and time course of diffusion abnormality.

Infarction is a rare cause of spinal cord dysfunction. Whereas diffusion-weighted (DW) MRI has been established as a highly sensitive technique for assessing acute cerebral ischemia, its role in spinal cord infarction remains to be determined. The purpose of this study is to present the signal characteristics of acute spinal cord ischemia using DWMRI within the first two days and after one week. MRI including DW imaging (DWI) was performed in three patients with acute spinal cord dysfunction 8, 12 and 30 hours after the onset of symptoms and repeated after one week in two patients. Two initial scans included EPI DW sequences in transverse and sagittal orientation. The remaining examinations were performed with an optimised high-spatial resolution DWI sequence in the transverse plane. The diagnosis of spinal cord ischemia was established by imaging, clinical history and CSF analysis. T2 signal abnormality and restricted diffusion was demonstrated in all initial examinations. Transverse DW sequences had the highest sensitivity. The spinal infarctions were mainly located in the centre of the spinal cord and the grey matter. Contrast enhancement was absent. After one week, the restricted diffusion had normalised (pseudo normalisation) whereas the T2 signal changes had become more prominent. Restricted diffusion in the course of spinal cord ischemic infarction can be demonstrated using DW-MRI. Whereas a diffusion abnormality can be found after few hours, it does not last for longer than one week. At this time, the establishment of the diagnosis has to rely mainly on T2-weighted images with additional post contrast T1-weighted images being useful.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app