JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

High-throughput detection of pathogenic yeasts of the genus trichosporon.

The need for a rapid and accurate method for the detection of fungal pathogens has become imperative as the incidence of fungal infections has increased dramatically. Herein, we tested the Luminex 100, a novel flow cytometer, for the detection of the medically important genus Trichosporon. This genus was selected as our proof-of-concept model due to the close phylogenetic relationship between the species. The method, which is based on a nucleotide hybridization assay, consists of a combination of different sets of fluorescent beads covalently bound to species-specific capture probes. Upon hybridization, the beads bearing the target amplicons are classified by their spectral addresses with a 635-nm laser. Quantitation of the hybridized biotinylated amplicon is based on fluorescence detection with a 532-nm laser. We tested in various multiplex formats 48 species-specific and group-specific capture probes designed in the D1/D2 region of ribosomal DNA, internal transcribed spacer regions, and intergenic spacer region. Species-specific biotinylated amplicons were generated with three sets of primers to yield fragments from the three regions. The assay was specific and fast, as it discriminated species differing by 1 nucleotide and required less than 50 min following amplification to process a 96-well plate. The sensitivity of the assay allowed the detection of 10(2) genome molecules in PCRs and 10(7) to 10(8) molecules of biotinylated amplification product. This technology provided a rapid means of detection of Trichosporon species with the flexibility to identify species in a multiplex format by combining different sets of beads.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app