Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Structural basis of mitochondrial tethering by mitofusin complexes.

Science 2004 August 7
Vesicle fusion involves vesicle tethering, docking, and membrane merger. We show that mitofusin, an integral mitochondrial membrane protein, is required on adjacent mitochondria to mediate fusion, which indicates that mitofusin complexes act in trans (that is, between adjacent mitochondria). A heptad repeat region (HR2) mediates mitofusin oligomerization by assembling a dimeric, antiparallel coiled coil. The transmembrane segments are located at opposite ends of the 95 angstrom coiled coil and provide a mechanism for organelle tethering. Consistent with this proposal, truncated mitofusin, in an HR2-dependent manner, causes mitochondria to become apposed with a uniform gap. Our results suggest that HR2 functions as a mitochondrial tether before fusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app