JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane.

PLoS Biology 2004 September
X-linked Emery-Dreifuss muscular dystrophy is caused by loss of emerin, a LEM-domain protein of the nuclear inner membrane. To better understand emerin function, we used affinity chromatography to purify emerin-binding proteins from nuclear extracts of HeLa cells. Complexes that included actin, alphaII-spectrin and additional proteins, bound specifically to emerin. Actin polymerization assays in the presence or absence of gelsolin or capping protein showed that emerin binds and stabilizes the pointed end of actin filaments, increasing the actin polymerization rate 4- to 12-fold. We propose that emerin contributes to the formation of an actin-based cortical network at the nuclear inner membrane, conceptually analogous to the actin cortical network at the plasma membrane. Thus, in addition to disrupting transcription factors that bind emerin, loss of emerin may destabilize nuclear envelope architecture by weakening a nuclear actin network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app